The Riesz Representation Operator on the Dual of C[0; 1] is Computable

نویسندگان

  • Tahereh Jafarikhah
  • Klaus Weihrauch
چکیده

By the Riesz representation theorem, for every linear functional F : C[0; 1] → R there is a function g : [0; 1] → R of bounded variation such that F (h) = ∫ hdg (h ∈ C[0; 1]) . A computable version is proved in [Lu and Weihrauch(2007)]: a function g can be computed from F and its norm, and F can be computed from g and an upper bound of its total variation. In this article we present a much more transparent proof. We first give a new proof of the classical theorem from which we then can derive the computable version easily. As in [Lu and Weihrauch(2007)] we use the framework of TTE, the representation approach for computable analysis, which allows to define natural concepts of computability for the operators under consideration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules

In this paper, we investigate duality of modular g-Riesz bases and g-Riesz bases in Hilbert C*-modules. First we give some characterization of g-Riesz bases in Hilbert C*-modules, by using properties of operator theory. Next, we characterize the duals of a given g-Riesz basis in Hilbert C*-module. In addition, we obtain sufficient and necessary condition for a dual of a g-Riesz basis to be agai...

متن کامل

Computable Riesz Representation on The Dual of C[0; 1]) Revisited

By the Riesz representation theorem, for every linear functional F : C[0; 1] → R there is a function g : [0; 1] → R of bounded variation such that F (h) = ∫ f dg (h ∈ C[0; 1]) . A computable version is proved in [LW07]: a function g can be computed from F and its norm, and F can be computed from g and an upper bound of its total variation. In this article we present a much more transparent proo...

متن کامل

Quasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions

We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact  (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...

متن کامل

G-Frames, g-orthonormal bases and g-Riesz bases

G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.

متن کامل

Some relationship between G-frames and frames

In this paper we proved that every g-Riesz basis for Hilbert space $H$ with respect to $K$ by adding a condition is a Riesz basis for Hilbert $B(K)$-module $B(H,K)$. This is an extension of [A. Askarizadeh, M. A. Dehghan, {em G-frames as special frames}, Turk. J. Math., 35, (2011) 1-11]. Also, we derived similar results for g-orthonormal and orthogonal bases. Some relationships between dual fra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. UCS

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2013